

# **NREL Efforts to Address Soiling on PV Modules**

Lin J. Simpson, Matthew Muller, Mike Deceglie, Helio Moutinho, Craig Perkins, Chun-Sheng Jiang, David Miller, Leonardo Micheli, Govindasamy Tamizhmani, Sai Ravi Vasista Tatapudi, Mowafak Al-Jassim ENERGY

> Contact area of real dust particl does not scale

with particle size

et.al., PVSC

at frame edge

nodule edaes

5 mm glass w/

frame removed is clear and does not

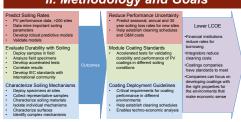
Edge of module/

Onset of cementation is detected with several materials on

QCM SiO<sub>2</sub> surface w/ humidity cycling

Frame edge

show soiling


**Coating Deployment Guidelines** 

F..... (RH ~ 77%

## I. Introduction

Natural soiling has reduced the energy output of PV systems since the inception of the technology. Soiling is a complex problem that increases uncertainty and drives up LCOE through lost energy production, increased O&M costs, and higher finance rates. In NREL's Quantifying Soiling Mechanisms comprehensive review of solar energy soiling,1 the issues have been discussed in the literature for more than 70 years, and yet "the fundamental properties of dust and its effect on energy transfer are still not fully understood, nor is there a clear solution to the problem.' For this project, NREL is performing systematic efforts to understand the processes involved so that the effects of soiling can be predicted for different environmental conditions and to provide the PV industry the tools/ knowledge necessary to devise cost effective mitigation.

## II. Methodology and Goals



## IV. Conclusions and Future Pursuits

- Capillary and van der Waals forces scale with contact area, not particle size. Developed working definition of cementation and demonstrated determines when loose dust particles become cemen
- · Need to quantify additional adhesion mechanisms

### · Need to identify appropriate cost effective cleaning/mitigation strategies

- Characterizing long term soiling/corrosion processes of fielded PV modules
- · Initial glass coupons deployed around the world
- · First year results starting to come in: organic materials major component
- · Little damage from accelerated test brushes
- · Dust slurry causing some haze
- · Need to correlate accelerated test results to observed field observations
- Begin drafting standard(s)

#### Soiling Rates:

- Initial procedures to determine soiling losses from production data working
- · Initial correlation between soiling losses & environmental factors iden
- · Need to expand to many more sites to validate initial findings

### References

- 1.Sarver et. al., Renewable and Sustainable Energy Reviews, 2013, vol. 22, issue C, pages 698-733
- 2. "An Investigation of the Key Parameters for Predicting PV Soiling Losses", Micheli et al. Progress in PV,
- http://onlinelibrary.wiley.com/doi/10.1002/pip.2860/epdf.
  3."A Scalable Method for Extracting Soiling Rates from PV Production Data", Deceglie et. al., IEEE PVSC 2016

## Acknowledgements

The authors would like to acknowledge and thank all those who contributed to this project including Sarah Krutz, Alan Sellinger, our industry collaborators, and partners around the world. This work was supported by the U.S. Departnern of Energy under Contract No. DE-AGS-960C9380 to the Valorial Renewable Energy Laboratory. Collaborations: First Solar, SunPower, EDF, Sun Edison, Enki Technology, 3M, DSM, DEWA, KISR,

QEERI, KACARE, Wells Farge

The U.S. Government retains and the publisher, by accepting the article for publication, acknowled at the U.S. Government retains a nonexclusive, paid up, irrevocable, worldwide license to publish or produce the published form of this work, or allow others to do so, for U.S. Government purposes.

## III. Results

NREL abrasion teste

With wet dust slurry a slight

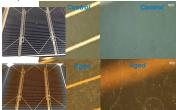
Deployed:

Mumbai, IIT Tempe, AZ

### Outcomes **Module Coating Standards**

#### Accelerated Testing Accelerated testing resi As expected brushes themse not damage the glass surface

Haze values are small and within the


discernable to some eyes
After 20K cycles, scratches using a running wet slurry test. slurry with larger dust particles are much higher than that observed on f




lmage of scrato accelerated test with wet slurry at cvcles.

Long Term Outdoor Tests

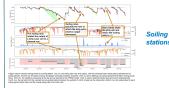






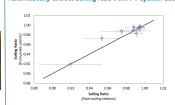
- Inexpensive chamber and dust delivery
- Humidity and temperature controlled to mimic daily dew and heat cycles
- Chamber can deliver reproducible amount of dust (collected from outdoor PV panels) to produce a uniform layer with controlled
- This type of system will be needed to perform accelerated tests associated with PV module coating durability and effectiveness.

## Reduce Performance Uncertaint



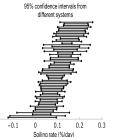

Create soiling loss map based on predictions usina environmental parameters.

Correlate environmental parameters to soiling loss 90% correlation to PM<sub>2.5</sub> and dry period length for initial 10 sites.


see Micheli et. al., PVSC Proceedings 2016 and 20172

#### Obtain soiling loss from production data




Production

# Automatically extract soiling loss from PV system data



Uncertainty in soiling station is large because more

- Comparison with "soiling station" data at 10 initial sites indicates method is working. Expanding to more
- Less than a 1% absolute difference at 8 sites



Spread in soiling rate analysis for different sites. see Deceglie et. al., PVSC Proceedings 2016 and 20173